
A-AOSa sea UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DIEL REV I O-ETC F/9 5/1
COWUTEM AS AUTHOR - RESULTS AND PROSPECYS. (U)

LILS F JAN SO- V C MANN. J1 A MOORE IFF9620-79-CmeIei

WCASIED ISI/RR-79-82 AFOSR-TR-80-0206 Hinunnunuu
inuuunuunuuun

IEOS-TR. 50.02 0 6

ISI/RR-79-82
(r'"janua y 1980

William C Mann

James A. Moore

Computer as Author-Results and Prospects

'I2

Orr

*R1 81980)

INFORMA1ITION S (.II . INS717TII1:

UNVSA'; (o Id i /IR CALVn/ /,,I,' / /I (/(.r.

go . 14 120
Approved for pu,,iio roleeng

A.'

Ai /

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (hen Data B.,fered)
•

- DOCUMENTATION PAGE READ INSTRUCTIONS
RP(MT DOCUMENTATIN PAGE BEFORE COMPLETING FORM

(I -r E, - mS - 6 GOVT ACCESSION NO. 3. RECIPIENT
'
S CATALOG NUM

B
ER

.4 TITLE (and Subtitle) .. TYPE OF REPORT & PERIOD COVERED

COMPUTER AS AUTHOR--RESULTS AND PROSPECTS *)Interim

•~~VW N. p sor UM 8E R

7. AUTHOR(&) 0. CONrA..T OR GRANT NUMBER(s)

James A.jMoore AFOSF4962-- 0l
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJ!C2" TASK

USC/Information Sciences Insti4et /AREA & WORK UNIT NUM!RS

4676 Admiralty Way
Marina del Rey, CA 90291 61102F-/23_4,Aj

I1. CONTROLLING OFFICE NAME AND ADDRESS J 42. REPORT DATE-

Air Force Office of Scientific Research/NM 1 Januaw 1380

Bolling AFB, Washington, D.C. 20332 43
* 14. MONITORING AGENCY NAME & ADDRESS(II different from Controlling Office) 15. SECURITY CLASS. (of this report)

-- --. "--" -- UNCLASSIFIED
i. i /'f '15. DECLASSI FICATION/ DOWNGRADING

S /. 5SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report)

* I

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side ii necessary and Identify by block number)

artificial intelligence, coherence, composition, computational linguistics,
English, fragment-and-compose, knowledge delivery system, organization,
synthesis, text, text generation.

20. *19STRACT (Continue on reverse side If necessary and identify by block number)

For a computer program to be able to compose text is interesting both
intellectually and practically. Artificial Intelligence research has only
recently begun to address the task of creating coherent texts containing more
than one sentence.

One recent research has produced a new paradigm for organizing and express-
ing information in text. This raradigm, called Fragment-and-Compose, has been
used in a pilot project to create texts front semantic nets. The method in-
volves dividing the given body of information into many small propositiona

FOR" . . .- L.i *

p.-

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

20. Abstract cont.

Nunits, and then .:ombining these units into smooth coherent text. So far the

largest example written by Fragment-and-Compose has been two paragraphs of
instruction about what a computer operator should do in case of indications of
a fire.

This report describes the text generation problem and anticipates a specific
way to disseminate and use technical developments. It presents the research
that led to creation of Fragment-and-Compose, including the largest example
of computer-produced text. It also discusses the immediate problems and diffi-
culties of elaborating Fragment-and-Compose into a general and powerful method.

.1

i1

ISIIRR-79
Jawwry I

Wholim C Mann

James A. Moore

Computer as Author -Results and Prospects

Distris

A. D. bai.'-

INFORMATION SCIENCEiS INSTITVTE

40 76 Adi/l/ralt Wna)AlarmDa del Rev/Calorit 90291I

F NflTH1 Y * o o fI RN A.fLf1f O%.N,. (213,14922-1511

tlws research~ was supported in port by National Science Foundation grant No. MCS76-07332 anid in part by the Air Force Office of Scientific
Iteseorch contract Wo F49620-79 C-018 1, the participation of Neil Goldmasn and June, Levin is gratefully acknowkiedged. The views and conch,-
s"Oni contairiedin this documnrt are those of the outhors. and should not be interprete at necessarily representing the official policies or endorse-
nerit, esther expressed or implied, of the Air Force Offie of Scientific 1eseards of tOe U.S. Gavernment.

/

iii

Contents

Overviow

1.Why Should a Computer be an Author? 1

2. Computer Generation of Multiparagraph English Text 2

2.1 Chapter Summary 2
2.2 Introduction 2
2.3 Multisentential Text Generation In Past Research 4

2.4 The Task for the Knowledge Delivery System 6

2.5 The Partitioning Paradigm 6

2.6 The Fragment-and-Compose Paradigm 8

2.7 Description of KDS 9

2.8 Major Modules of KOS 12

2.9 Fragmenter Module 13

2.10 Problem Solver Module 14

2.11 Knowledge Filter Module 17

2.12 Hill Climber Module 20
2.13 Sentence Generator Module 24

2.14 Output Text 25

2.15 Conclusions and Prospect 25

3. Problems in Knowledge Delivery 27

3.1 Issues Raised by the Fragment-and-Compose paradigm 29
3.1.1 Problems of Knowledge Location 29

3.1.2 Problems of Fragmenting 31

3.1.3 Problems of Planning 31

3.1.4 Problems of Knowledge Filtering 32
3.1.5 Problems of Aggregation 33

3.1.0 Problems of Preference Determination 35

3.1.? Problems of Sentence Generation 35

3.2 Summary of Problems 36

4. Natural Language Knowledge Delivery in the Future 37

References 3

L A-

/

Overview

Several distinct aspects of research on text synthesis are considered in this report.

Each chapter was written separately for a distinct purpose. They are gathered here for

convenience and because they jointly give a more comprehensive overview of this line

of research.

Why and How? Chapter 1 explores the motivations and potential benefits of text

synthesis research. The present state of the art discriminates in

favor of some styles of research; it discriminates against others.
Attributes of a particularly timely style of research are identified,

and the nature of research productivity in that style is described.

Where are we? Chapter 2 presents our past work in text synthesis. This research

produced both the KDS system and the Fragment-and-Compose

paradigm. The chapter is an independent document made available
here for the first time.

What next? Chapter 3 considers the problems of going on to research that

exploits the knowledge gained from KDS. It explores the issues of

designing a successor system and identifies high priority problems

for research attention.

Where to? Chapter 4 is an attempt to anticipate a practical, useful form for

results of the recent research and the immediately forthcoming
research, of which the present project is a part. it is necessarily

speculative, but it provides a target pattern of developments that

can serve as both a bench mark and a draft for future

developments. ,

Aogsssion For

N#TI.S G.; &l
DDC TAB

Jtu: t i :'i tio_ -

I..................
r.. ; ,. .'!i, r _-

'"...Dist a Xa"-

1

1. Why Should a Computer be an Author?
Why, indeed? Computers are not known for their skills as authors, and little research

has been done on causing them to write. Yet there is no fundamental reason for a
machine to be incapable of creating high-quality text. The fact that machines are not
authors reflects a profound ignorance of the technical details of the process of authoring
(we avoid the more common term "writing" because it has already been consumed in
other ways by computer technology), an essential process In producing most of
mankind's Intellectual products. Ignorance of its details (and even of its general nature)
leads to great curiosity, which for some people Is enough to spark interest in further

research.

Computers have been used successfully to investigate many processes, some of
which would not have been supposed to lend themselves to computer research, for

*' example, speech perception and text comprehension. We should expect that attempting
to make a computer function as an author, even in the most rudimentary way, would be
an efficient discovery procedure, leading to new knowledge of the nature and details of
the process of authoring. For the curious, an attempt to program an author is an
expedition into uncharted regions, interesting and largely unexplored.

Beyond curiosity, there are practical motivations for pressing computers to create
text. Natural languages, and only natural languages, have billions of readers. Natural
language is often the only notation understood by all of the potential users of a
collection of knowledge residing In a machine. And aside from the billions of potential
readers, there are many people using computers today for whom computer output is
obscure and frustrating. Computer output in their own language would help these people.
For some of these computer users, modest advances in text composition techniques

would be enough for practical purposes.

Practical motivations and scientific motivations usually lead to different kinds of
research, but In this case they do not. The state of the art now easily permits the
Pursuit of both scientific knowledge and eventual usefulness through the same research.

IIl I II ll I IIlI

2

2. Computer Generation of Multiparagraph English Text

2.1 Chapter Summary

This chapter reports recent research into methods for creating natural language

text.1 A new processing paradigm called Fragment-and-Compose has been created and

an experimental system (KDS) implemented in it. The knowledge to be expressed in text

is first divided into small propositional units, which are then composed into appropriate

combinations and converted into text.

KDS (Knowledge Delivery System), which embodies this paradigm, has distinct parts

devoted to creation of the propositional units, to organization of the text, to prevention

of excess redundancy, to creation of combinations of units, to evaluation of these

combinations as potential sentences, to selection of the best among competing

combinations, and to creation of the final text. The Fragment-and-Compose paradigm

and the computational methods of KDS are described.

2.2 Introduction

Computer users have difficulties in understanding what knowledge Is stored In their

computers; the systems have corresponding difficulties in delivering their knowledge.

The knowledge in the machine may be represented in an incomprehensible notation, or we

may want to share the knowledge with a large group of people who lack the training to

understand the computer's formal notation. For example, there are large simulation

programs that get into very complicated states we would like to be able to understand

easily. There are data base systems with complex knowledge buried In them, but real

problems in extracting it. There are status-keeping systems from which we would like to

get snapshots. There are systems that try to prove things, from which we would like to

have progress reports and Justifications for various actions. Many other kinds of

systems have knowledge-delivery difficulties.

The circumstances that make knowledge delivery In natural language particularly
attractive are: a) complexity of the source knowledge, so that its notation is not easily

t Thi chapter has been sumrotted to a tecnical jornal for publication.

COMPUTER GENERATION OF MULTIPARAGRAPH ENGLISH TEXT 3

learned, b) unpredictability of the demands for knowledge, so that the actual demands

cannot be met with specific preprogrammed output, and c) the need to serve a large pool
of untrained or lightly trained users of the knowledge.

For a number of the kinds of systems mentioned above, getting the Information out is
one of the principal limitations on the system's uses. If the information could be

accessed more easily, then far more people could use the systems. So we're talking in
part about facilitating existing systems, but much more about creating new opportunities

for systems to serve people.

If computer systems could express themselves in fluent natural language, many of

these difficulties would disappear. However, the necessary processes for such
expression do not exist, and there are formidable obstacles even to designing such
processes. The theory of writing is sketchy and vague, and there are few interesting
computer systems to serve as precedents. Any research effort to create such

systems--systems that know how to write--can be significant both In Its practical
implications and for the knowledge of writing that it produces.

Writing is an intellectually interesting task, though poorly understood. If we went to
have a better theory, a better characterization of the nature of writing, then we can use

computer program design and test as a discovery procedure for exploring the subject.

In the present state of the art, the same research can create both theoretical
knowledge and practical computational methods.

Of course, In a limited sense, programs already deliver knowledge in natural language
by using "canned text." A person writes some text, possibly with the use of blanks, and

the text is stored for use in association with a particular demand. The machine fills in
the blanks as needed in a way anticipated as sufficient for the demand. This is a very
useful technique, but it does not tell us much about the task of writing, and it does not

generalize to situations in which the need for text has not been well anticipated In the
programming stage. The basic organization and writing of canned text are done by a

person, so that sort of "writing" fails outside the scope of this report.

4 Computer as Author

The Idea that natural language would be a useful output medium for a computer
system Is quite old, but the research to make such output possible is still in a very
primitive state. Most of it has concentrated on sentence generation, In which problems
such as word selection or translation to natural language from logical formulas In some
propositional calculus have been chosen for study. These are important, but the needs
for knowledge delivery simply cannot be satisfied by single sentences. it is necessary
to have multiple sentences to communicate complex Information, and multiple paragraphs

would be even more valuable.

The remainder of this chapter thus focuses on computer generation of muitisentence
text. We present some examples of multisentence output from past systems and then

discuss our own research.

2.3 Multisentential Text Generation In Past Research

Several systems have generated multisentence text;2 sample texts from three of
these are shown in Figure 1. One example Is the SCHOLAR system, which describes

aspects of South American geography. SCHOLAR's description of a South American
country was several sentences long [Carbonell 73]. The SAM system, a story generator

operating from a conceptual dependency script, also created multisentential output

[Schank and project 75]. More recently, Meehan developed TALE-SPIN, a fable

generator that worked in a different wly, also based on a conceptual dependency

representation [Meehan 77]. All of these systems generate multisentence text.

The systems share several features. First, the data structures that are the basis of

the generation were designed for text processing; many of the special demands of text

Processing were anticipated and accommodated in the design of the knowledge

structures themselves. Second, the sentence boundaries In these systems were direct

correlates of Internal features of the data structures themselves. Often the sentence

order arose in the same way. Third, these systems had fixed generation goals, Implicit In

the code. Fourth, goal-pursuit occurred only in the content of the material being
generated from; the systems themselves did not operate on a goal-pursuit algorithm.
Finally, none of these systems chose the particular sentences to use In their output on

the bases of quality assessment or comparisons among alternatives.

2 All of the cited research has worked with English, but other languages would have served as well.

COMPUTER GENERATION OF MULTIPARAGRAPH ENGLISH TEXT 5

SCHOLAR:

TELL ME ABOUT THE LOCATION OF URUGUAY.

THE LOCATION IN URUGUAY [S SOUTH AMERICA.
THE LATITUDE RANGES FROM -30 TO -35 DEGREES.
THE LONGITUDE RANGES FROM -53 TO -58 DEGREES.

THE NORTHERN AND EASTERN BORDERING COUNTRY IS BRAZIL.
THE WESTERN BORDERING COUNTRY IS ARGENTINA.

THE BOUNDARY IS THE URUGUAY RIVER.
THE SOUTHEASTERN COAST IS THE ATLANTIC OCEAN.

THE SOUTHERN COAST IS THE RIO DE LA PLATA.

SAM:

John decided he was going to a restaurant. He went to one. He asked the
hostess for a table. She told him he could go to It. He went to It. She went
to it. He sat down in a chair. He got a menu from her. He read It. A waiter
saw John was at the table. The waiter went to It. John ordered a lobster. A
chef cooked it. The waiter got it from the chef. The waiter served it to John
quickly. He ate it. He asked the waiter for a check. John got it from the
waiter. John remembered the waiter had served the lobster to him quickly.
John left the waiter a large tip. John paid the check. He left the restaurant.

TALESPIN:

ONCE UPON A TIME GEORGE ANT LIVED NEAR A PATCH OF GROUND. THERE
WAS A NEST IN AN ASH TREE. WILMA BIRD LIVED IN THE NEST. THERE WAS
SOME WATER IN A RIVER. WILMA KNEW THAT THE WATER WAS IN THE RIVER.
GEORGE KNEW THAT THE WATER WAS IN THE RIVER. ONE DAY WILMA WAS
VERY THIRSTY. WILMA WANTED TO GET NEAR SOME WATER. WILMA FLEW
FROM HER NEST ACROSS A MEADOW THROUGH A VALLEY TO THE RIVER. WILMA
DRANK THE WATER. WILMA WASN'T THIRSTY ANY MORE.

GEORGE WAS VERY THIRSTY. GEORGE WANTED TO GET NEAR SOME WATER.
GEORGE WALKED FROM HIS PATCH OF GROUND ACROSS THE MEADOW THROUGH
THE VALLEY TO A RIVER BANK. GEORGE FELL INTO THE WATER. GEORGE
WANTED TO GET NEAR THE VALLEY. GEORGE COULDN'T GET NEAR THE VALLEY.
GEORGE WANTED TO GET NEAR THE MEADOW. GEORGE COULDN'T GET NEAR
THE MEADOW. WILMA WANTED TO GET NEAR GEORGE. WILMA GRABBED
GEORGE WITH HER CLAW. WILMA TOOK GEORGE FROM THE RIVER THROUGH
THE VALLEY TO THE MEADOW. GEORGE WAS DEVOTED TO WILMA. GEORGE
OWED EVERYTHING TO WILMA. WILMA LET GO OF GEORGE. GEORGE FELL TO
THE MEADOW. THE END.

Figure 1. Some published multisentence text samples

6 Computer as Author

In all five of these points, the KDS research contrasts with these previous efforts.

We have worked with data structures not designed for text generation, the sentence

boundaries we develop are not direct correlates of internal features of the data

structures, there are explicit goals for the generation process to satisfy, the system

* itself pursues goals, and the final text is chosen through quality comparisons among

alternative ways of saying things.

2.4 The Task for the Knowledge Delivery System

In the light of these considerations, the problem can be restated more specifically as

follows:

Given

1. An explicit goal of knowledge expression,

2. A computer-internal knowledge base adequate for some non-text purpose,
and

3. Identification of the parts of the knowledge base that are relevant to the
goal,

the task is to produce clean, multiparagraph text, in English, which satisfies the

goal.

2.6 The Partitioning Paradigm

When we have stated this task to Al workers familiar with natural language

processing, with no further specification, they have expected a particular kind of

solution. They say, "Well, there are some sentence generators around, but the given

information structures are too large to be expressed in single sentences. Therefore

what we need is a method for dividing up the input structure Into sentence-size

pieces. Then we can give the pieces to a suitable sentence generator and get the

desired text."

This is the expected solution, and people will simply presume that it is the line of

development being taken.

COMPUTER GENERATION OF MULTIPARAGRAPH ENGLISH TEXT 7

That approach, which we call the Partitioning paradigm for text generation, was used

in all the systems described above. In the Partitioning paradigm, the generation task Is

simplified by features of the knowledge base:

1. The knowledge base data structures have features that indicate
appropriate sentence boundaries, and

2. The collection of Information appropriate to be expressed in an individual
sentence is adjacent. That is, a process can access all of the Information
appropriate to be expressed in a single sentence by following the data
structure, without being required to traverse Information to be expressed In
other sentences.

These conditions prevail (by design) Ii, all of the systems described above, but they

are not generally typical of information storage In computers. KDS, on the other hand,

takes an entirely different approach to the problem.

Several Inherent difficulties become apparent when we attempt to use partitioning.

1. Missing adjacencies--Since (by our problem definition) the knowledge
comes from a structure not prestructured for the generation task, what Is and
what is not adjacent in the knowledge base may be quite arbitrary. We may
wish to include several widely scattered items in a sentence, so that it is not
possible to carve out a piece with those items in it at all. The adjacencies
that we need in order to partition the structure into sentence-size parts may
simply be absent.

2. Intractable residues--Even though we may be able to find some way to
start cutting out sentence-size objects from the data structure, there is no
assurance at all that we will be able to run that method to completion and
carve the entire structure into sentence-size pieces. Think of the
comparable problem of carving statues from a block of marble. We may be
able to get one statue or several, but if every part of the original block must
end up looking like a statue, ordinary carving methods are Insufficient. The
residues left after carving out the first few statues may be Intractable. A
comparable sort of thing can happen in attempting to partition data structures.

3. Lack of boundary correlates--In some ways the worst difficulty is that
an arbitrary given data structure does not contain structural correlates of
good sentence boundaries. One cannot inspect the data structure and tell In
any way where the sentence boundaries ought to be. Along with the other
difficulties, this has led us to reject the expected solution, the Partitioning
paradigm, and to create another.

a Computer as Author

2.6 The Fragment-and-Compose Paradigm

Our solution comes in two steps:

1. Find methods for fragmenting the given data structure into little pieces,
small propositional parts.

2. Find methods for composing good sentences and good paragraphs out of
those little parts.

We call this the Fragment-and-Compose paradigm. It Is interesting to notice other

systems employing a Fragment-and-Compose approach--e.g., building construction,

papermaking, and digestion. In each, one begins by producing small, easily manipulated

objects much smaller than the desired end-product structures, and then assembles

these Into the desired end products in a planned, multistage way. For the block of

marble, the comparable processes are crushing and casting.

We may not be very encouraged in our text generation task by such precedents.

However, there are precedents much closer to our actual task. The task of natural

language translation resembles in many ways the task of translating from a computational

knowledge source (although it has a comprehension subtask which we lack). Consider

the (annotated) quotation below from Toward a Science of Translating [Nida 64].

Determination of Equivalence (Faithful Translation)

The process by which one determines equivalence (faithfully translates)
between source and receptor languages is obviously a highly complex one.

However, It may be reduced to two quite simple procedures:

(1) "decomposition" of the message into the simplest semantic structure,

with the most explicit statement of relationships; and

(2) "recomposition" of the message into the receptor language.

The quotation is from Nida's chapter on translation procedures. Notice particularly

the two steps: decomposition and recomposition, and the emphasis on simple, explicit

semantic structures in the results of the decomposition.

COMPUTER GENERATION OF MULTIPARAGRAP4 ENOLIS TEXT 9

It turns out that this is the central procedural statement of Nida's book, and the
remainder of the book can be seen as giving constraints and considerations on how this

decomposition and recomposition ought to take place. We have very good reasons here

for expecting that Fragment-and-Compose is an appropriate paradigm for natural

language knowledge delivery.

To give a sense of what can be done using Fragment-and-Compose, here is a piece
of a machine-generated text about what happens when fire breaks out in the computer

room.

Whenever there is a fire, the alarm system is started, which sounds a
bell and starts a timer. Ninety seconds after the timer starts, unless the
alarm system is cancelled, the system calls Wells Fargo. When Wells
Fargo is called, they, in turn, call the Fire Department.

2.7 Description of KDS

Figure 2 is a block diagram of KDS, which simply says that KOS takes in an
Expressive Goal (telling what the text should accomplish relative to its reader) and also
a pro-identified body of Relevant Knowledge in the notation of its source. The output is

clean multiparagraph text that can satisfy the goal.

Expressive
goal KDS Multiparagroph

Relevant . K text
knowledge

Figure 2. Input and output of KDS

, 1 We will be carrying a single example through this description of KOS. It is the most
complex example handled by KDS, and it Incorporates many ideas from previous studies

on description of computer message systems.

A small contingency plans data base contains knowledge about what happens in
various circumstances, and about people's actions, responsibilities, authorities, and
resources. The particular knowledge to be delivered concerns a computer room in which

7
10 Computer as Author

there may be some Indication of fire and In which there is a computer operator who

should know what to do if that happens. This operator is the nominal reader of the text.

The general expressive goal is that the computer operator knows what to do in all of
the predrctable contingencies that can arise starting with an indication of fire. The

contingencies are represented in the "Fire Alarm Scene," part of the knowledge base. A
schematic sketch of the Fire Alarm Scene is given in Figure 3. (The figure Is expository
and contains far less information than the actual Scene. The Scene is a "semantic net,"

a collection of LISP expressions that reference the same objects.)

The knowledge identified as relevant includes not only the events of this scene but
also enough information to support another computational task. In this case the
knowledge is sufficient to support an alternate task, which we call the Motivation Exhibit

task, that is to exhibit, for each action In the scene, the actor's reasons for perfoming

the action. So, for example, the relevant knowledge Includes the knowledge that fires

destroy property, that destroying property is bad, that the amount of property destroyed

Increases with the duration of the fire, and that the Fire Department is able to employ

methods for stopping fires. This is sufficient to be able to explain why the Fire
Department attempts to stop fires. KDS does not perform the Motivation Exhibit task,

but Its knowledge is sufficient for it. We generate from a knowledge base sufficient for
multiple tasks in order to explore the problems created when the knowledge

representation is not designed for text processing.

The content of the scene Is as follows:

In the beginning state, INIT, tho fire alarm sounds a bell. As we follow down
the left side of the figure, we see that the fire alarm starts an Interval timer,
and at the end of the interval, the timer automatically phones Wells Fargo
Company, the alarm system manager. Wells Fargo phones the fire department,
and the fire department comes. The fire department fights the fire if there Is
one, and otherwise goes home.

Meanwhile, the computer operator must pay attention to the alarm and
decide what to do. He can bloc.k the alarm system's action, cancelling the
alarm, or he can let the alarm system take its course. In the latter case, his
next duty is to call the fire department himself, which has the same effect as
Wells Fargo calling it. After that, his next duty is to flee. If he blocks the
alarm then he is to go back to his previous task.

• t
COMPUTER GENERATION OF MULTIPARAGRAPH ENGLISH TEXT

(bell sounds or
* fire detected;

timer starts)

TIMOTATN

* (timer elapses) (evaluate situation)

l"CALL1 1 PE RM IT BLC

(Wells Fargo called) (don't cancel) (cancel alarm)

ANSWER CA2, AKTO-WORK
EID -_ I-- 1

(Fire Dept. called) (call Fire Dept.) (resume work)

NSE FLIGHT

(Fire Dept. responds) (evacuate)

SIGHTIE
(Fire Dept. fights fire) (Fire Dept.

| goes home)

(end of scene)

Figure 3. Events in the Fire-Alarm scene

12 Computer as Author

2.8 MaJr Modules of KD8

KOS consists of five major modules, as Indicated In Figure 4. A Fragmenter Is

responsible for extracting the relevant knowledge from the notation given to it and

dividing that knowledge into small expressible units, which we call fragments or

protosentences. A Problem Solver, a goal-pursuit engine in the Al tradition, Is responsible

for selecting the presentational style of the text and also for Imposing the gross

organization onto the text according to that style. A Knowledge Filter removes

protosentences that need not be expressed because they would be redundant to the

reader.

KDS MODULES MODULE RESPONSIBILITIES

FRAGMENTER * Extraction of knowledge from external notation
0 Division into expressible clauses

PROBLEM SOLVER * Style selection* Gross organization of text

FKNOWLEDGE FILTER * Cognitive redundancy removal

HILL CLIMBER * Composition of concepts
* Sentence quality seeking

SURFACE SENTENCE MAKER e Final text creation

Figure 4. KDS module responsibilities

The largest and most Interesting module is the Hill Climber, which has three

responsibilities: to compose complex protosentences from simple ones, to Judge relative

quality among the units resulting from composition, and to repeatedly Improve the set of

protosentences on the basis of those Judgments so that it Is of the highest overall

quality. Finally, a very simple Surface Sentence Maker creates the sentences of the

final text out of protosentences.

The data flow of these modules can be thought of as a simple pipeline, each module

processing the relevant knowledge in turn. We will describe each of these modules

individually.

COMPUTER GENERATION OF MULTIPARAGRAPH ENGLISH TEXT 13

2.9 Fragmenter Module

The Fragmenter takes In the relevant knowledge as it exists externally and

produces a set of independent protosentences, called the Sayset. (See Fig. 5.) These

primitive fragments, the protosentences, have no intended order. (In our experiments,

they are presented in a list that is immediately randomized.) Each primitive

protosentence can, if necessary, be expressed by an English sentence.

So the problem for the remainder of the system Is to express well what can surely

be expressed badly. it is important to note that this is an improvement problem rather

0than a problem of making expression in English feasible.

Relevant F SAYSET
Knowledge

Figure 5. Fragmenter module input and output

The protosentences the Fragmenter produces are propositional and typically carry

much less Information than a sentence of smooth English text.

So, in our example, the fragmenter produces the list structures shown in part below

for two of its fragments.

((CONSTIT (WHEN (CALLS NIL WELLS-FARGO)
(CALLS WELLS-FARGO FIRE-DEPT)))...)

((CONSTIT (WHENEVER (STARTS NIL ALARM-SYSTEM)
(PROD (SOUNDS ALARM-SYSTEM

BELL]...)

14 Computer as Author

2.10 Problem Solver Module

The second major module is the Problem Solver (Fig. 6). The primary responsibilities

of the Problem Solver are to select a text presentation style and to organize the text

content according to the selected style. For this purpose, it has a built-in taxonomy of

styles among which it selects. Although the taxonomy and selection processes are very

rudimentary in this particular system, they are significant as representatives of the kinds

of structures needed for style selection and style imposition.

-,

Expressive
Goal

PROBLEM (SAYLIST with ADVICE)

ISA Y SETI
S--E

Figure 6. Problem Solver input and output

We believe that text style should be selected on the basis of the expected

effects. In simple cases this Is so obvious as to go unrecognized; in more complex

cases, which correspond to complex texts, there are many stylistic choices. in order to

select a style, one needs:

1. A description of the effect the text should have on the reader,

2. Knowledge of how to apply stylistic choices, and

3. A description of the effects to be expected from each stylistic choice.

Note that these are required whether stylistic choices are distributed or wholistic,

* i.e., whether they are made in terms of attributes of the final text or in terms of

particular methods for creating or organizing the text.

The first item, a description of desired effects, is (more or less by definition) a goal.

The second item is the set of applicable methods, and the third is the knowledge of their

effects. The Problem Solver is a goal-pursuit process that performs means-ends analysis

in a manner long familiar in Al. The information organization is significant partly because

COMPUTER GENERATION OF MULTIPARAGRAPH ENGLISH TEXT 15

of the domand it puts on the knowledge of style: Knowledge of style must be organized

according to expected effect.

The Problem Solver takes in the Sayset produced by the Fragmenter and the

Expressive Goal given to the system and produces a Saylist, which is an ordered list of

the protosentences, some of which have been marked with Advice. The Problem Solver

pursues given goals. It has several submodules that specialize in particular kinds of

goals, including modules Tell and Instructional-narrate, which are active on this example.

The Problem Solver can operate on the current Sayiist with three kinds of actions in any

of its modules:

1. It can Factor the Saylist, extracting all protosentences with a particular
character or attribute and placing them before all those that lack that
attribute, retaining order within each sublist. The result is a simple list
consisting of the upper sublist, a now paragraph-break protosentence, and
the lower sublist.

2. It can impose an order on some or all of the elements of the Saylist.

3. It can mark protosentences with Advice. Sometimes the Problem Solver
knows some attribute of the final text that ought to be achieved, perhaps
because of a demand of the chosen style, but it has no way to effect this
directly. In this case it marks all the affected protosentences with Advice,
which will be acted on after the Problem Solver has finished.

Figure 7 below describes the rules used In the Problem Solver that carry out these

throe kinds of actions. In this example, the Tell module acts before

Instructional-narrate.

The first Tell rule corresponds to the heuristic that the existence of something ought

to be montioned before its involvement with other things is described. The third rule

-4 corresponds to the heuristic that the writer (KDS) ought to reveal Its own goals of

writing before pursuing those goals.

Instructional-norrate uses a presentationa technique that makes the reader a

participant in the text. So, for example, the final text says, "When you hear the alarm

bell " rather than "When the opetator hears the alarm bell...," Instructional-narrate

knows that the role of "you" should be emphasized In the final text, but it has no direct

way to achieve this. To every protobentence that refers to "you," it attaches advice

16 Computer as Author

Factoring Rules

TELL
1. Place all (EXISTS ...) propositions in an upper section.
2. Place all goal propositions in an upper section.
3. Place all writer's goal propositions in an upper section.

INSTRUCTIONAL-NARRATE

1. Place all propositions with non-reader actor
in an upper section.

2. Place all time dependen t propositions in a Iower section.

Ordering Rules

INSTRUCTIONAL-NARRATE

1. Order time-dependent propositions according to

the (NEXT ...) propositions.

Advice-giving Rules

INSTRUCTIONAL-NARRATE

1. YOU is a good thing to malke explicit in the text.

Figure 7. Rules used in the Problem Solver

saying that explicit reference to the reader, which Is done by mentioning "you" In the

final text, has positive value. This advice is taken inside the Hill-climber.

In our example the Problem Solver creates the following fragment:

(PARAGRAPH-BREAK (REASON (BOUNDARY NON-H-ACTOR)))

((CONSTIT (WHEN (IF (POSSIBLE)
(CALL YOU FiRE-DEPT))

(EVOKE YOU EVAC-SCENE)))...
(ADVISORS FRAG INST-NARRATE)
(ADVICE ...(GOOD YOU)))

~

COMPUTER GENERATION Of MULTIPARAGRAPH ENGLISH TEXT 1
2.1 1 Knowledge Filter Module

The Knowledge Filter is a necessary part of KDS because as soon as we attempt to

create text from a knowledge base suitable to support some other computational

purpose, we find a great deal of information there that ought not to be expressed,

because the reader already knows it.

This is a general phenomenon that will be encountered whenever we generate from

an ordinary computational knowledge baso. As an illustration, consider Badler's work on

getting a program to describe a movie in English.

Figure 8 is reproduced from [Badler 7,15]. It shows fifteen successive scenes from a

short computer-generated movie. The graphics system that generates the movie

provides a stock of propositional knowledge about It. The objects in the scene are

known to the machine unambiguously and in sufficient detail to generate the movie. The

research task is to create a computer program that will describe in English the physical

activities in this and similar movies. The detail is voluminous, and so Badler is faced with

a serious information suppression problem. After several stages of applying various

filtering heuristics, such as "Don't describe directly anything that doesn't move," he can

represent the movie by the five statements below.

C.1 There is a car.

C.2 The car starts moving toward the observer and eastward, then
onto the road.

C.3 The car, while going forward, starts turning, moves toward the
observer and eastward, then northward-and-eastward, then from
the driveway and out-of the driveway, then off-of the driveway.

C.4 The car, while going forward, moves northward-and-eastward, then
northward, then around the house and away-from the driveway,
then away-from the house and stops turning.

C.5 The car, while going forward, moves northward, then away.

18 Computer as Author

16 1

3 13

4 __________________14

5 10 15

Figure 8. Badler's "Moving Car Scenario"

These are still too cumbersome, so additional stages of reduction are applied,

yielding the single statement:

The car approaches, then moves onto the road, then leaves the driveway,
then turns around the house, then drives away from the house, then stops
turning, then drives away.

Even the longer text above contains only a fraction of the available information

about the car and the other objects. Information on their types, their subparts, visibility,

mobility, location, orientation and size are available from Badler's source. He also

develops a sequence of events to describe the movie, based on certain indicators of

continuity and discontinuity. The volume of information available, the predictability of

COMPUTER GENERATION OF MULTIPARAGRAPH ENGLISH TEXT 19

Its parts, and the Insignificance of some of its details are such that all of it could
not have been expressed In a smooth text.

One of the principal activities of Badler's system Is selection of Information to be
removed from the set of knowledge to be expressed. Some things need not be
expressed because they follow from the reader's general knowledge about motion of
obJects; others are removed because thoy represent noisiness, rather than significant
events, generated by the processes that discern motion.

The point for us is simply that the demands of smooth text production are
incompatible with expression of all of the available information. Text production
requires condensation and selectivity, the process we call knowledge filtering, on any
reasonably complete body of knowledge. Knowledge filtering Is a significant Intellectual
task. It requires coordinated use of a diversity of knowledge about the reader, the
knowledge to be delivered, and the world in which all reside. We now recognize the
necessity of sophisticated knowledgo filtering as part of the process of producing

quality text.

KDS's Knowledge Filter inputs the Saylist, including Advice, from the Problem Solver,
and outputs the Saylist with additional Advice, called "Don't Express" advice, on some of
the protosentences. (See Fig. 9.) So some 0f the items have been marked for omission
from the final text. (They are marked rather than deleted so that they are available for
use If needed as transitional material or to otherwise make the resulting text coherent.)
It decides which protosentences to mark by consulting its internal model of the reader to
see whether the propositional content is known or obvious. Although KDS's reader model
does not contain any inference capabilities about what is obvious, a more robust model
certainly would. We recognize that the work of the Knowledge Filter is a serious
intellectual task, and we expect that such a filter will be an Identifiable part of future
text creation programs.

In our example the Knowledge Filter produces the DON'T-EXPRESS advice In the
following element of the Saylist:

20 Computer as Author

((CONSTIT (WHENEVER (SOUNDS NIL ALARM-BELL)
(HEARS YOU ALARM-BELL)
(PROB)))...

(ADVISORS I NST-NARRATE NONEXP)

(ADVICE (GOOD YOU)
DON' T-EXPRESS))

KNOWLEDGE (SAYLIST with added
* (SAYLIST with ADVICE) FILTER DON'T-EXPRESS advice)

Reader

Model

Figure 9. Knowledge Filter module input and output

2.12 Hill Climber Module

The Hill Climber module (Fig. 10) consists of three parts:

1. A somewhat unconventional hill-climbing algorithm that repeatedly selects
which one of an available bet of changes to make on the Saylist.

2. A set of Aggregation rules (with an Interpreter) telling how the
protosentences may legally be combined. These correspond roughly to the
clause-combining rules of English, and the collection represents something
similar to the writer's competonce at clause coordination. Each
Arjgregatlon rule consumes one or more protosentences and produces one
protosentence. Advice propagates onto the protosentences produced.

3. A set of Preference rules (with an interpreter) able to assign a numerical
quality score to any protosentence. The score computation is sensitive to
Advice.

The algorithm is equivalent to the following. Scores are assigned to all of the

primitive protosentences, then the Aggregation rules are applied to the Sayllst In all

possible ways to generate potential next steps up the hill. The resultant

COMPUTER GENERATION OF MULTIPARAGRAPH ENGLISH TEXT 21

(SAYLIST) ALGORITHM (SAYLIST)

Primitive Primitive and composite
protosentences protosentences

Aggregation Rule Applier Preference Rule Applier

AGGREGATION RULES PREFERENCE RULES

(A numerical score for
(The allowable clause- each protosentence)

combining methods of English)
~(ADVICE taken here)

Figure 10. Hill Climber module

protosentences are also evaluated, and the Hill Climber algorithm then compares the

scores of units consumed and produced and calculates a net gain or loss for each

potential application of an Aggregation rule. The best one is executed, which means that

the consumed units are removed from the Saylist, and the new unit is added (in one of

the positions vacated, which one being specified in the Aggregation rule).

This process is applied repeatedly until improvement ceases. The output of the Hill

Climber is a Saylist for which there are no remaining beneficial potential applications of

Aggregation rules.

This Saylist improvement activity is the technical heart of the text production

process, it develops the final sentenc:e boundaries and establishes the smoothness of

the text.

FI-guro 11 shows a few of the Aggregation rules. (Each of them has been rewritten

into an informal notation suggesting Itt, content.) Aggregation rules are intended to be

mooning-preserving In the reader's comprehension, but are not intended to preserve

explicitness.

22 Computer as Author

1. Common cause.
Whenever C then X.

"* Whenever C then X and Y.
Whenever C then Y.

2. Conjoin mid-state
Whenever X then Y.

Whenever X then Y and then Z.
Whenever Y then Z.

3. Delete mid-state
Whenever X then Y.

Whenever X then Z.
Whenever Y then Z.

4. Delete existential
There is a Y.
-cmention of Y> <mention of Y>
(Y is known unique)

S. If-then-else
If P then Q.

If P then Q otherwise R.
If not P then R.

G. Test and branch
When P then determine whether X.
If X then 0. When P then determine X and
If not X then R. decide 0 or R.

Figure 11. Sampie Aggregation rules

These are only a few of the Aggregation rules that have been used in KDS; others
have been developed In the course of working on this and other examples. Coverage of
English is still very sparse. In other examples, an aggregation rule has been used to
produce a multiple-sentence structure with intersentential dependencies.

Figure 12 shows the Preference rules.

One of the surprising discoveries of this work, seen in all of the cases Investigated,
is that the task of text generation is dominated by the need for brevity: How to avoid
saying things is at least as Important as how to say things. Rule I Introduces a
tendency toward brevity, because most of the Aggregation rules consume two or three
protosentences but produce only nne, yielding a large gain In score. Sentences
produced from aggregated protosentences are generally briefer than the corresponding

sentences for the protosentences con;umed.

COMPUTER GENERATION OF MULTiPARAGRAPH ENGLISH TEXT 23

1. Every protosentence gets an initial value of -1000.

2. Every primitive protosentence embedded in a composite protosentence
decreases its value by 10.

3. If there is advice that a term Is good, each occurrence of that term
increases value by 100.

4. Each time-sequentially linked protoaentence after the first increases value
by 100.

5, Certain constructions get bonuses of 200: the if-then-else construct and

the Whon-X-determine-Y.

0. Any protosentence produced by multiple applicatlons of the same
aggregation rule gets a large negative value.

Figure 12. Preference rules

Rule 3 introduces the sensitivity to advice. We expect that this sort of advice
taking does not need to be elaborate--that being able to advise that a term is good or a
term Is bad is adequate.

Rule 6 is somewhat of a puzzle. Empirically, a sentence produced by reapplication of
an Aggregation rule was always definitely unacceptable, primarily because it was
awkward or confusing. We do not understand technically why this should be the case,
and some say it should not be. We do know that this rule contributes significantly to

overall quality.

The selection algorithm of the Hill Climber is somewhat unconventional in that it does
not select the Aggregation rule application with the largest increase In collective score,
which would be the usual practice. The hill of collective scores has many local maxima,
which can be traced to the fact that one application of an aggregation rule will preclude
several others. Because protosentenc'es are consumed, the various applications are In

competition, and so a rule that producos a large gain may preclude even more gain.

24 Computer as Author

The Hill Climber selects the rule application to use based on an equation that

includes competitive terms. It computes the amount of gain surely precluded by each

application and makes Its selection on the basis of maximum net gain, with the precluded

gain subtracted.

2.13 Sentence Generator Module

The Sentence Generator (Fig. 13) takes the final ordered set of protosentences

produced by the Hill Climber and produces the final text, one sentence at a time. Each

sentence is produced independently, using a simple context-free grammar and semantic

testing rules. Because sentence generation has not been the focus of our work, this

module does not represent much innovation, but merely establishes that the text

formation work has been completed and does not depend on further complex processing.

(Protosentence SENTENCE Final text
list) GENERATOR

Referring-
Phrase

Generator

Figure 13. Sentence Generator module input and output

The single significant innovation in the Sentence Generator is the Referring Phrase

Generator, the only part in which prior sentences affect the current sentence. The

Referring Phrase Generator keeps track of what objects have been referred to, and

how. It presumes that objects previously referred to are in the reader's attention and

that after they have been identified by the first reference, subsequent references need

only distinguish the object from others in attention. This process Is equivalent to the one

described by [Levin and Goldman 78] developed for this research. It knows how to

introduce terms, refer to objects by incomplete descriptions, and Introduce pronouns.

However, none of our examples has exercised all of the features of Levin and Goldman's

algorithm.

COMPUTER GENERATION OF MULTIPARAGRAP. ENGLISH TEXT 25

2.14 Output Text
Applying all of this machinery in our example, we get the result shown in Figure 14.

Note the paragraph break, a product of a factoring rule (the first rule in
Instructional-narrate) In the Problem Solver module.

Whenever there is a fire, the alarm system is started, which sounds a bell

and starts a timer. Ninety seconds after the timer starts, unless the alarm
system is cancelled, the system calls Wells Fargo. When Wells Fargo Is
called, they, in turn, call the Fire Department.

When you hear the alarm bell or smell smoke, stop whatever you are doing,
determine whether or not there Is a fire, and decide whether to permit the
alarm system or to cancel It. When you determine whether there is a fire, If
there is, permit the alarm system, otherwise cancel it. When you permit the
alarm system, call the Fire Department if possible, then evacuate. When you
cancel the alarm system, if it is more than 90 seconds since the timer started,
the system will have called Wells Fargo already, otherwise continue what you
were doing.

Figure 14. Final fire-alarm text from KDS

2.16 Conclusions and Prospect
The development of KDS highlights several aspects of the task of writing that

strongly influence text quality. The overwhelming importance of brevity, seen in both the
Knowledge Filter and the Preference rules, is striking. Writing is seen here as a
constructive activity rather than simply as interpretive. That is, it is not so much a
mapping between knowledge representations as it is the creation of new symbolic
objects, not equivalent to older ones, but suitable for achieving particular effects. The
image of writing as a kind of goal pursuit activity is helpful In factoring the task into
parts. The task (and the program) is occupied with finding a good way to say things, not
with establishing feasibility.

The KDS development has also established features of the knowledge-delivery
program design problem. The defects of the Partitioning paradigm are newly
appreciated; the Fragment-and-Compose paradigm is much more manageable. It Is easy
to understand, and the creation of Aggregation rules Is not difficult. The separation of
Aggregation and Preference actions ,ieemn essential to the task, or at least to making
the task manageable. As a kind of competence/performance separation It is also of

-.-- -.. t..t ~ ,~, - -.- ** -I

26 Computer as Author

*" theoretical interest. Knowledge filtering, as one kind of responsiveness of the writer to

the reader, is essential to producing good text.

The importance of fragmenting is clear, and the kinds of demands placed on the

Fragmenter have been clarified, but effective methods of fragmenting arbitrary

knowledge sources are still not well understood.

In the future art, we expect to see the Fragment-and-Compose paradigm reapplled

ext-inslvoly. We expect to see goal-pursuing processes applied to text organization

and style selection. We expect distinct processes for aggregating fragments and

selecting combinations on a preference basis. We also expect a well developed model

of the reader, including inference capabilities and methods for keeping the model up to

date as the text progresses. Finally, we expect a great deal of elaboration of the kinds

of aggregation performed and of the kinds of considerations to which preference

selection responds as well.

27

3. Problems in Knowledge Delivery

How can the Fragment-and-Compose paradigm be developed into a generally

effective approach to knowledge delivery? What are the problems to overcome in doing

so? What kinds of goals should guide immediate efforts to develop techniques within

this paradigm?

One kind of goal arises from the nature of the task, and a different kind from the

it details of its current state of development. The first kind is discussed below; the

second In section 3.1.

We have chosen to focus on the task of delivering knowledge In the form of

multisentonce English text. What is the general condition of the state of the art for such

design? It has several prominent features:

1. Every kind of relevant information Is scarce--abstract principles, prior
system designs, working precedents, useful algorithms are all hard to find.

2. Existing precedents (of any of these kinds) tend to be specialized to the
particular environments In which they arose, and so they tend to depend on

arbitrary combinations of conditions that occur only infrequently.

3. There is no theoretical framework useful to designers.

4. There are no widely accepted criteria for judging the quality of knowledge
delivery. However, subjective judgements of relative quality for the sorts
of text that machines can produce are usually easy and uncontroversial.
They are an adequate guide to quality effects.

Advancing this state of the art calls for an approach focusing on:

- invention of new methods rather than evaluation of existing methods,

- feasibility rather than economy,

- informal research style rather than formal style,

- delivering knowledge in new ways rather than refining existing ways,

- generalization of methods wherever possible.

The current state of the art thus puts high value on Invention and innovation.

Research in knowledge delivery must therefore present a flexible framework that can

28 Computer as Author

accommodate a great deal of unpredictable change. It must address problems definite

enough to stimulate and receive Innovations.

Notice that these priorities arise from the general condition of the art, not from the

details of Its technical content. There are also Important priorities that come from the

technical content; they are discussed In section 3.1.

It possible, the research framework should suggest ways to generalize the

Innovations it creates. In practical terms, this means that the research should not be

j carried out in a theoretical vacuum.

Even though there Is no suitable theoretical framework that the designer of a

knowledge delivery system may use, there are relevant theoretical perspectives for the

research. The function of these perspectives is to suggest generalization* of

Innovations. They give a way of thinking about the relationships between a method that

works in a particular case and the range of cases in which that method could be made to

work. The perspectives particularly important to this research are:

-Phllot-ophy

m Speech Act Theory

* Theory of Action

Logic

-Linguistics

Syntax

Semantics

Pragmatics and Discourse

*Computer Science

Artificial Intelligence

Natural Language ProcesIng

PAOBLEMS IN KNOWLEDGE DELIVERY 29

The limitations of the Fragment-and-Compose paradigm are not well understood. We

cannot predict the difficulties that might arise with a new domain of knowledge to

deliver, a new representational notation from which to generate, or new kinds of uses for

the generated text. These kinds of extension are all largely unexplored.

It is therefore important to exercise the paradigm on a diversity of knowledge

delivery tasks, tasks chosen to search out the strengths and weaknesses of the

paradigm as a whole.

3.1 Issues Raised by the Fragmant-and-Compose paradigm

The Fragment-and-Compose paradigm can be divided into seven parts:

1. Knowledge Location
2. Fragmenting
3. Planning
4. Knowledge Filtering
5. Aggregation
6. Preference Determination
7. Sentence Generation

Since there are design Issues for every element of the paradigm, we need to

identify the issues both technically significant and Influantial on progress and

immediately addressable by research. The sections below identify and discuss such

problems.

3.1.1 Problems of Knowledge Location

The KDS system was given a goal to pursue and a pre-identified body of "relevant"

knowledge useful in pursuing the goal. The issue of how to find the body of relevant

knowledge was not addressed. We intend that the Fragment-and-Compose paradigm be

usable in systems not designed with text generation in mind. (We call this outer system

the "source system" because it is the source of the knowledge delivered.) The source

system cannot be expected to deliver pre-identified bodies of relevant knowledge on

demand.

We therefore need a new kind of subprocess, which we call a Locator, to actively

discover the knowledge to be delivered in response to a goal. The Locator Is not

analogous to any process in KDS.

30 computer s Author

Tha Information representation In tile source system Is expected to be idiosyncratic,

incomplete, and not organized for the knowledge delivery task. Since relevance Is

Inevitably somewhat uncertain, the Locator is expected to be in1clusive, to Identify the

possibly-relevant and exclude the great bulk of surely-irrelevant knowledge.

The Locator must determine relevance with respect to a goal expression that Is one

of its inputs. How can an item of knowledge be relevant to a goal?

For the given goal, there are several Methods that potentially could satisfy
the goal, and for each Method there are several Preconditions and Input
Conditions that govern its use, and Methods may use other Methods as
subordinates. An Item of knowledge is sufficiently relevant for the purposes
of the Locator if it satisfies any of the following conditions:

1. It tells (entirely or in part) whether a Precondition is satisfied;

2. It tells (entirely or In part) whether an Input Condition is satisfied;

3. It Is relevant to a Method that is a potential subordinate of a Method

known to be usable.

In other words we may attempt to anticipate every kind of information use that could

take place in pursuing the given goal and decide that all such information is relevant.

This approach is unsatisfactory for several reasons:

- It Is not selective enough, since It delivers all of the information that
appears relevant to all of the potential methods for responding to the goal.

- It Is disorganized, since It does not necessarily associate an Item of
Information delivered with the various methods for using the information.

- It is inefficient, since In general it produces far more Information than can
be used.

The concept of "relevance" carried forward from KOS is not precise enough for our

task. The Locator should deliver information that will be useful to the methods actually

employed by the system. However, there is a potential circularity: selecting methods

Involves knowing which methods are feasible, which In turn Involves knowing what

Information is available, and locating information for the method Involves prior selection of

a method.

FIT. --

PROBLEMS IN KNOWLEDGE DELIVERY 31

One way out of the circularity is to associate with each method an independent test

of its foasibility. A feasibility test might be Inexpensive relative to the cost of locating

all of tho information that would potentially be used by a method. This observation leads

to a research Interest in identifying independent feasibility tests for a system's principal

methods of expressing knowledge.

This means that the role of the Locator will not be that of an independent
preprocessor, as would be suggested by KDS, but rather that the Locator should operate

in close intera'tion with the Planning activities, as Planning searches through the space

of feasible plans to construct an appropriate plan.

3.1.2 Problems of Fragmenting

The Fragmenter works closely with the Locator, translating information from an

Idiosyncratic external notation to a notation suitable for all of the further processing. The

Fragmonter's output notation (representation) must be particularly strong. It should be

possible to represent:

- all of the "facts" In the present source system;

-facts in other knowledge domains that might be represented In other

source systems;

- combinations of facts arising in building complex sentences;

- various speech acts that can be performed relative to such facts.

Much of the generality and future utility of a knowledge delivery system thus

depends on the robustness of the fragment representation scheme. In a sense, we want

It to have the full expressive power of natural language, since complex protosentences

will be encoded in it. On the other hand, it must be subject to a wide variety of formal

operations.

3.1.3 Problems of Planning

The "planning" operations include organizing the text and selecting a suitable style.

The chief research problem in planning is to discover a useful and manageable

decomposition of these operations. In general there is a vast amount of knowledge of

text styles In the world, but it Is widely acknowledged that good writing requires

/

32 Computer as Author

Invention as well. This large body of Information and techniques is well beyond the reach
of today's research. What is needed is the command of a much more modest range of
skills. The KDS system provided for a range of skills and document types only In
principle, since the modules not exercised by the fire-response task were mere
placoholdors. It remains for a multisentence text generation system to embody any
significant enumeration of potential styles.

3.1.4 Problems of Knowledge Filtering

The function of the Knowledge Filter is to mark knowledge that, If expressed, is

likely to be useless to the hearer. 3 The principal way that knowledge may be useless is
by already being mutually known by the hearer and the system. Such knowledge is
"obvious" to the hearer, and it is marked by the Knowledge filter so that such material

can be given special treatment (usually deletion). The difficulties all arise in knowing

what is "obvious."

Several inadequate views should be set aside immediately:

1. What is obvious is (to a good approximation) a fixed list that we can create
for use with any particular hearer or audience. But what is obvious is also
combinatorially unmanageable. If we must search a given list to find that it
Is obvious to all readers of IS technical reports that all Russian admirals
have livers, we are lost.

2. What Is obvious is that which is known (and perhaps In attention at the
moment) and that which necessarily follows from it. But logical necessity
does not lead to obviousness. Consider the four-color theorem.

Conversely, some things are obvious that do not necessarily follow from
what is known. It is "obvious" that anyone who speaks English fluently
knows what a pencil is.

3. For a particular hearer, every proposition Is either obvious or not, so that
what is obvious to the hearer cn be represented by a predicate on
hearers and propositions, say OBVIOUS(H,P). Unfortunately, what Is not
obvious In one circumstance and time is obvious In another, and what is not
obvious may suddenly become so. Obviousness depends not only on
available information and circumstances, but also on the time available for
reflection.

3 We follow the Ingulsts convonatoc of referring to srek e heater, rowgdloss of whether the media of*omftm"cMt1on ,nch4e an audtory m.

PROBLEMS IN KNOWLEDGE DELIVERY 13

The knowledge filter must include some model of the hearer. It must Include an
Inferential capability in order to identify the "obvious" but unenumerable facts, but it
must not simply be an inference engine that will identify that which is necessarily so.
Designing this limited inference capability so that it represents real hearers well is
currently the principal technical problem of knowledge filtering.

In the long run, there will be other kinds of uselessness for which we will want
identification and knowledge filtering action. Uselessness is a lack of function. The
system will come to contain a positive theory of the functions of knowledge, since it will
be using knowledge to achieve goals. The other kinds of knowledge filtering will tend to
be complementary to this theory. We expect that some future generation of systems
would use the same theory for both text planning and identifying other kinds of
candidates for deletion from being expresed. Addressing such problems is premature.

3.1.8 Problems of Aggregation

Aggregation is in essence the competence to put knowledge) into combinations that
can be expressed as single sentences In English. It Includes all of the available
variations, without regard for their frequency in use. There are some complex
aggregation structures. One modurately complex one is built around the word
"respectively." Some, such as the "wheroas" structures of legal language, can be used
iteratively at indefinite length. Brevity, parallelism, and the offects of repetition all

Involve forms of aggregation.

KDS had an interesting but very small set of aggregation rules. They were
autonomous and meaning-preserving.

One part of the immediate challenge in aggregation is to discover and make explicit a

useful working set of aggregation forms. They are easy to discover in existvng text,
but it is not clear how many are needed for fluent expression.

A second part of the challenge is more difficult. One might imagine that the effect of
expressing a combination of items of knowledge would be the same as the combined
effects of expressing the items individually. This kind of additive property prevails in
logic and mathematics, but there are many Information-combining forms of expression In

English that are not additive.

34 Computer as Author

Consider tie combination

(a) John is rich.

(b) John is stupid.

vs.

(c) John is rich but stupid.
The latter expresses a contrast by using "but," suggesting that there is some

surprise or incongruity found in the combination of wealth and stupidity. The suggestion
is missing when the two propositions about John are expressed separately, e.g., by

(d) John is rich and stupid.

It might be difficult to convey the suggestion of incongruity more succinctly than by
this use of "but."

The point is simply that the aggregation forms have consequences beyond merely
expressing their component items of knowledge. It is essential to understand these
consequences, to associate them with the aggregation forms that produce them, and to
design systems so that they produce these effects appropriately.

What are these nonadditive effects? Many of them can be seen as affecting the
coherence of the text. There are meny varieties of coherence, many notions of

continuity in text *h1at affect the hearer. Brian Phillips, in [Phillips 79], mentions these:

1. Anaphora (2 kinds)
2. Spatial coherence
3. Temporal coherence

* -J4. Causal coherence
5. Thematicity

There are many other potentially useful analyses of coherence [Halliday 76].

The first four areas are particularly fertile in producing effects of combination.
Anaphord. lomporal sequence, causal consequences, and spatial connection all have
Special words for expressing them, words frequently used to combine assertions. In
addition, mere juxtaposition can be used to express these relations as well as others.

PROBLEMS IN KNOWLEDGE DELIVERY 35

This leads to a serious technical challenge, the design of an aggregation-rule

representation and Interpreter to accommodate the nonadditive effects of aggregations

and yet operate with the autonomy and meaning-preserving character of the KDS rules.

3.1.6 Problems of Preference Determination

The function of preference determination Is to select, among all of the currently

feasible aggregation operations, one which will be applied. The design of a preference

determiner is complicated by several inherent difficulties:

1. There is no clear standard of preference, and people's preferences vary

and differ a great deal.

2. Even for a particular Individual, context, situation and time, there are some
equally preferable alternatives that do not lead naturally to a suitable

choice.

3. The factors leading people to prefer one expression over another are

poorly known and hard to discern, even for the Individual who has a definite

preference.

4. Selectivity in text production may reflect accidental systomatIc factors as

well as genuine preference. Hobbs has supported this view.

Boyond those factors, development of preference processes depends on maturity of

the processes providing the alternatives. It Is therefore not timely to attempt a

sophisticated development of preference notions and processes. The general scheme

represented in KDS can be extended in detail to be adequate for present research

purposes.

3.1.7 Problems of Sentence Generation

The sentence generator of KOS was a postprocessor that operated on a list of

aggrogated propositions. It did not partic:ipate in the system's selectivity, and none of

the consequences of sentence generation were directly available for preference

determination. These are design flaws of KDS. They can be corrected in part by

changing the control structure so that sentence generation Is a resource for other parts

of the system rather than a postprocessor.

36 Computer as Author

The sentence generator in KDS was rudimentary; it did not require innovations
outside of those required for repeated reference [Levin and Goldman 78], and even the
developments for repeated reference were not fully utilized. We expect that sentence
generation for multiparagraph text will not strain the state of the art in the forthcoming
systems. A more flexible structure than that of KDS's sentence generator is needed, as
much for research convenience as for Its theoretical significance.

3.2 Summary of Problems

We recognize a need for new knowledge delivery methods to enable computer
systems to communicate to their users, especially in natural language. In pursuit of this
goal a now paradigm of text-generation, called Fragment-and-Compose, has been
created. Initial experience with this paradigm suggests that it has the appropriate
flexibility and generality for development into a general-purpose knowledge delivery
technique. This effort might include developing text-generation methods and programs
that are reusable, sharable and adequate for new tasks with the provision of a localized
system-specific knowledge location part.

The state of the art is currently weak. Useful knowledge and experience are
scarce, and many of the specific problems of knowledge delivery have not yet been
addressed. This puts a premium on invention of new techniques and new concepts.
Theory is currently more useful in evaluating innovations than in designing a knowledge
delivery system.

The current state of development of Fragment-and-Compose raises several technical
challenges that can be addressed directly. Prominent among these are:

- the design of general-purpose knowledge location processes;

- a control structure for efficient locator control;

- a robust representation for primitive and aggregated fragments;

- a limited-inference capability with output that approximates "obviousness
to people";

- substantial coverage of the aggregation forms of English;

- systematic use of nonadditive aggregation forms, with explicit provision for
coherent results.

37

4. Natural Language Knowledge Delivery in the Future
Although knowledge delivery procesases are usually designed on an ad hoc,

System-by-system basis, It is worthwhile to have a systematic method in view for the
future when the problem and possible solutions will be better understood. This chapter
presents such a method, with the expectation that making this vision explicit will help us
to develop and modify It until it becomes a realistic pattern of design and Implementation.

In this paradigm, natural language knowledge delivery is a capacity that can be
routinely designed for a system. There are many routine proUramming tasks today for

which there are no serious issues of feasibility, no major uncertainties about the

Offactivenoss of available techniques. Such tasks as building an assembler for a new
computer instruction set. providing geometric data analysis to surveyors, writing a
sorting program, or providing a text editor for a new timesharing system may be
interesting or even challenging, but feasibility is well established. We can be sure from
the outset that an acceptable solution can be found. In this sense, they are routine.

BEGIN FUTURE

The designer of a knowledge delivery capability has available existing
prog'am nodules corresponding to the Problem-solver, Knowledge Filter,
Aggrogator, Preferrce Determiner and Sentuncs generator of KOS. These
u4ply a basic generating capability for English, with a basic vocabulary, text

organization and paragrph smoothing capabilities. The notation used in the
Knowledge Filter in widely circulated and well understood. The User Model
comes with a stock of common knowledge and inference rules for deciding
what is "obvious." The part of Ihe User-model holding specific declarations
about the use1rl1 of the new system in incomplete, so the inlementer must add
to the representation of what the user knows.

*The imlemenier must create r, new Fragmenter for hie system, which can
transfer propositiornal knowledge from the given representation in the new
system to the standard "prolosnt ence" represenlation used in the delivery
moCIues. 14e must also create a Locitor module that can access the system's
knowledge in its own representation and identily the parts relevant for
expression in response to a given formal Goal. Finlly, an part of the Locator,
he must provide one or more drivers for the knowledge delivery subsystes.
Each driver in a source of formai Goals that tell the knowledgg delivery
subsystem whet to Oawoill.

Computer as Author

All of the parts the implementar supplies are specific to the new task end
system. All of the given modulais tire independent of task and esYtem, but

specific only to the porticular natural language chosen. Modules are available
for English and certain related European languages, end several sets may be
uned for multilingual output.

In this design paradigm, devi lopment of the modules that know rtural

language is cumulative, rather than buing fresh for each new system. This

knowledge is independent of both the system's tlks and its knowledge
ropresentation, since knowledge of these is localized in the system-.pecific
Frogmenter, Locator, and Drivers.

! Part of the User-model also arises in a cumulative fashion. The User-model
contains two kinds of knowledga, a) common knowledge and inference rulsa

that arise in every system (such as knowledge of the months of the year, or of

how to deduce which of two tiverits came first) and b) task-specific and
system-specific knowledge, and knowledge about the particular users being

nddressed at the moment. These are not cleanly separable, but the
implementer can expect that prior implementers who have utilized this
User-model have supplied nearly all of the common knowledge needed.

To summarize, the implementor's problem of supplying natural language
knowledge delivery is, module by module:

Sentence Maker ACQUIRE FROM PREVIOUS USE
Aggregator ACQUIRE FROM PREVIOUS USE
Preference Determiner ACQUIRE FROM PREVIOUS USE
Knowledge-Filter ACQUIRE FROM PREVIOUS USE
User-model ACQUIRE COMMON KNOWLEDGE

FROM PREVIOUS USE

DECLARE USER'S TASK KNOWLEDGE

Fragmenter PROGRAM IT
Locator PROGRAM IT

IUND FUTURE

Although we recognize that this Imlelnenter's paradigm has not yet been achieved,

it functions as a guideline for planning and as a partial factoring of the knowledge

dolivery program into independent conimunicating modules. Makirij it a reality appears to

be technically foasible and manageable within the conventional system-development

methods currently used. We expect that in the future, reuse of a particular set of

knowledge generator modules can be a; easy as reuse of compiler, assembler, and

loader modules is today.

89

References

[Badler 75] Badler, N.I., "The conceptual description of physical activities," in

Proceedings of the 13th Annual Meeting of the Association for Computational

Linguistics, 1975. AJCL Microfiche 35.

[Carbonoll 73] Carbonell, J. R., and A. M. Collins, "Natural semantics in artificial

Intelligence," in Proceedings of the Third International Joint Conference on

Artificial Intelligence, pp. 344-351, 1973.

,A [Halliday 76] Halliday, M. A. K., and R. Hasan, English Language Series. Volume 9:

Cohesion in English, Longman, London, 1976.

[Lovin and Goldman 78] Levin, J.A., and N. M. Goldman, Process Models of Reference in

Context, USC/Information Sciences Institute, Research report 78-72, 1978.

[Meehan 77] James R. Meehan, "TALE-SPIN, an Interactive program that writes stories,"

in Proceedings of the Fifth International Joint Conference on Artificial Intelligence,

1977.

[Nida 64] Eugene Nida, Toward a Science of Translating, E. J. Brill, Leiden, 1964.

[Phillips 70] Phillips, B., "A model for knowledge and its application to discourse

analysis," American Journal of Computational Linguistics Microfiche 82, 1979,

[Schank and project 75] Schank, Roger C., and the Yale A.I. Project, SAM--a story

understander, Yale University, Dept. of Computer Science, Research report 43,

1975.

j

